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TECHNICAL NOTE

A pooled percentile estimator for parallel simulations
Qiong Zhang a, Bo Wangb and Wei Xieb

aSchool of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA; bDepartment of Mechanical and Industrial
Engineering, Northeastern University, Boston, MA, USA

ABSTRACT
Percentile is an important risk measure quantifying the stochastic system random behaviours.
This paper studies a pooled percentile estimator, which is the sample percentile of detailed
simulation outputs after directly pooling independent sample paths together. We derive the
asymptotic representation of the pooled percentile estimator and further prove its normality.
By comparing with the classical percentile estimator used in stochastic simulation, both
theoretical and empirical studies demonstrate the advantages of the proposal under the
context of parallel simulation.
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1. Introduction

Discrete-event simulation is often used to assess the
performance of complex stochastic systems, especially
in the situations where the direct analytical solution
and physical experiments are infeasible or prohibitive
(Banks et al., 2010). Advanced computer architectures
have made parallel computing available and popular
in many engineering and scientific areas. Nelson
(2016) raises new research questions about how to
exploit this computing advantage in estimating simu-
lation system performance, especially risk measures,
such as percentiles. As mentioned in Nelson (2016),
a fundamental challenge is how to efficiently utilise all
available parallel computing processors to improve
estimation accuracy.

In this paper, we consider the steady-state system
performance. A single run of simulation generates
a sample path of detailed outputs with a given run-
length. For various existing system performance (e.g.,
mean and risk) estimation approaches, both variance
and bias of their estimators can be reduced by increas-
ing the run-length (Nelson, 2016). Since the detailed
outputs in a simulation sample path are generated
sequentially, it could be challenging to chop
a dependent sample path into chunks and run sepa-
rately in parallel from multiple processors. As a result,
the run-length becomes the key bottleneck in improv-
ing the computational efficiency with parallel
simulation.

For the classical percentile estimation approach, we
typically calculate the sample percentile of outputs from
each simulation run and then take the average of the
percentile estimators from multiple replications. The
asymptotic properties of this estimator have been well-

studied in the literature (e.g., Sun and Hong (2010)). As
noted in Heidelberger and Lewis (1984), accurate esti-
mators of tail percentile measures greatly rely on
a sufficiently large run-length, which could be a luxury
for complex and fast-evolving stochastic systems. For
example, we are interested in the 95% percentile of
waiting time in a queueing service system. Since the
system is required to adapt fast to the evolving demand,
we need to assess the system performance and make
decisions under a certain tight time deadline. Notice
that the run-length greatly relates to the simulation
running time before the deadline. Therefore, the parallel
processors can increase the number of replications and
utilise the available parallel processor under an urgent
deadline. However, the classical percentile estimators
may not make efficient use of the detailed output sample
paths. This could impact the percentile estimation accu-
racy, especially when the decision-making time is tight.

In this paper, we study a percentile estimator which
is computed by directly pooling the detailed simula-
tion outputs from various replications to obtain
a sample percentile estimator, which is named as the
pooled sample percentile estimator. By pooling the
dependent (within each replication) and independent
(cross different replications) simulation outputs, the
resulted sample percentile is introduced to accurately
estimate the percentile. Given tight decision time, this
result can leverage the prevalent parallel computing
power. The pooled percentile estimator has been
investigated under independent and identically dis-
tributed observations, such as Asmussen and Glynn
(2007) and Nakayama (2014), and recently been used
to construct the confidence interval of percentile esti-
mators based on a sequence of dependent observations
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in Alexopoulos et al. (2019). In this paper, we develop
the asymptotic results of the pooled percentile estima-
tor based on the framework in Sen (1972). Our asymp-
totic results show that the proposed estimator has
better performance especially under the situations
with multiple processors and urgent time deadlines,
i.e., the job request is too urgent to produce sufficiently
longer sample paths. We highlight our contribution as
follows.

● We illustrate how the pooled percentile estimator
can be used to improve the accuracy of the clas-
sical average percentile estimator under the con-
text of parallel simulation.

● We provide the proof of the asymptotic results of
the pooled percentile estimator that is generated
from multiple replications of dependent
sequences.

2. A pooled percentile estimator for parallel
simulations

Our goal is to estimate the percentile of the stationary
distribution for steady-state simulation. Let X be
a random variable representing a single entry in
a detailed simulation output sample path. We denote
the marginal cumulative distribution function (CDF)
by FðxÞ ¼ PðX � xÞ, and denote the α-level percentile
by �α;F�1ðαÞ, where 0< α< 1.

We consider the detailed outputs generated from
the steady-state stochastic simulation model,

fXji; j ¼ 1; 2; � � � ;R; i ¼ 1; 2; � � � ; Lg (1)

with R independent sample paths each with run-
length L. Particularly, Xji denotes the i-th element of
the j-th sample path output. Notice that different
sample paths are independent with each other, but
entries within each sample path are element-wise
dependent. The pooled outputs in (1) contain N ¼
L� R entries, which construct an empirical CDF:

FNðxÞ ¼ 1
N

XR
j¼1

XL
i¼1

IðXji � xÞ; (2)

where Ið�Þ is the indicator function. Let Xð1Þ � � � � �
XðNÞ denote the order statistics over all the entries in
(1). We define the α-level pooled percentile estimator
obtained by combining all the entries by

�̂ðPÞα ¼ XðNαÞ; (3)

where a denotes the smallest integer greater than or
equal to a.

As noted earlier in Section 1, the classical percentile
estimator (see Bekki et al. (2009); Chen and Kelton
(2006) for examples) is to obtain the α-level sample

percentile from each replication, �̂j;α ¼ Xj; Lαð Þ with

Xj;ð1Þ � � � � � Xj;ðLÞ for j ¼ 1; . . . ;R. The final estima-
tor is

�̂ðAÞα ¼ 1
R

XR
j¼1

�̂j;α; (4)

which is referred to as the average percentile estimator
in this paper. The asymptotic properties of each indi-
vidual �̂j;α have been studied by a vast collection of
papers; see, for example, Sen (1972). Thus, the corre-
sponding asymptotic properties of the average percen-
tile estimator can be directly developed based on the

mutual independence among �̂j;α for j ¼ 1; 2; . . . ;R.
The pooled percentile estimator has been investigated

under independent and identically distributed (i.i.d.)
observations, such as Asmussen and Glynn (2007),
Nakayama (2014), and Alexopoulos et al. (2019), the com-
parison of the asymptotic properties between the pooled
percentile estimator and the average percentile estimator
based on i.i.d. observations have been stated. Also, given
a single replication, the pooled estimator obtained from
dependent sequences is used to adjusting the confidence
interval of percentile estimators. However, the comparison
of asymptotic properties between the pooled percentile
estimator and the average percentile estimator based on
multiple replications of dependent sequences has not been
formally stated in the literature. To fill this gap, we provide
the theoretical comparison of the pooled percentile esti-
mator and the average percentile estimator. Our theory is
developed based on Assumptions of 2.1–2.4.

Assumption 2.1. For each replication j ( ¼ 1; � � � ;R),
fXji;�1< i<1g is a stationary sequence of ϕ-
mixing random variables, i.e., for the σ � fields Fk

�1
and F1

kþn generated by fXji; i � kg and fXji; i � kþ ng
respectively, we have

P ðE2jE1Þ � P ðE2Þj j � ϕðnÞ; for�1< k<1; andn
� 1

(5)

where E1 2 Fk�1 and E2 2 F1
kþn, and 1 � ϕð1Þ �

ϕð2Þ � � � � � 0 with limn!1 ϕðnÞ ¼ 0, and

X1
n¼1

etnϕðnÞ<1 for some t > 0: (6)

Assumption 2.2. R ¼ oðLÞ as L ! 1.

Assumption 2.3. F
0 ðxÞ ¼ f ðxÞ is continuous and posi-

tive in the neighbourhood of �α.

Assumption 2.4. f
0 ðxÞ ¼ d

dx f ðxÞ is positive and
bounded in the neighbourhood of �α.

Assumption 2.1 is called the ϕ-mixing condition,
which is commonly adopted in the steady-state simu-
lation output analysis (Chen & Kelton, 2000; Steiger &
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Wilson, 2001). It states that serial dependency
decreases as the lag increases. Bradley (2005) and
Bradley (2010) provided the results of theoretically
verifying the ϕ-mixing condition for some popular
examples of dependent sequences, such as Markov
chains, stationary Gaussian processes, and etc.
Assumption 2.2 is that we normally consider the run-
length far larger than the number of replications, and
it also matches the situation in parallel computing
where the number of available processors is often
less than the run-length for the steady-state simula-
tion. Assumptions 2.3 and 2.4 are the common
assumptions for developing asymptotic representa-
tions of percentile estimators.

3. The asymptotic representation of the
pooled percentile estimator

The asymptotic representation of sample percentile
has been investigated under both independent data
and dependent sequence data. For the pooled percen-
tile estimator of simulation outputs from independent
replications, asymptotic characterisation is still miss-
ing in the literature. We aim to fill this gap and
develop the asymptotic representation for the percen-
tile estimator with pooled sample paths and provide
the theoretical insights on how to deploy multiple
processors to improve the estimation of system per-
centile response. We first provide the asymptotic
representation of the pooled percentile estimator
through Theorem 3.1, and then Theorem 3.2 gives its
asymptotic distribution. The proofs of these Theorems
follows a similar logic as in Sen (1972), and extend
their results in incorporate multiple replications of
dependent sample paths.

Theorem 3.1. Consider a small neighbourhood around
the true α-level percentile �α, denoted by
IN ¼ x : jx � �αj � N�1=2 log L

� �
. Under

Assumptions 2.1–2.3, as L ! 1,

sup
x2IN

j½FNðxÞ � FNð�αÞ� � ½FðxÞ � Fð�αÞ�j
¼ OðN�3=4 log LÞ (7)

almost surely. Further, under Assumption 2.4, we have,

j½α� FNð�αÞ� � ð�̂ðPÞα � �αÞf ð�αÞj ¼ OðN�3=4 log LÞ;
(8)

almost surely.

Proof. Let ηr;N ¼ �α þ rN�3=4 log L, where
r ¼ 0;�1; . . . ;�bN , and bN ¼ N1=4. Then for all
x 2 Jr;N ¼ ½ηr;N ; ηrþ1;N �, we have that

sup
x2IN

j½FNðxÞ � FNð�αÞ� � ½FðxÞ � Fð�αÞ�j
� max

�bN�r�bN
j½FNðηr;NÞ � FNð�αÞ�

� ½Fðηr;NÞ � Fð�αÞ�j
þ max

�bN�r�bN�1
jFðηrþ1;NÞ � Fðηr;NÞj:

Since ηrþ1;N � ηr;N ¼ N�3=4 log L, by the Mean-Value
Theorem,

jFðηrþ1;NÞ � Fðηr;NÞj � j sup
x2Jr;N

f ðxÞjðηrþ1;N � ηr;NÞ

¼ OðN�3=4 log LÞ;
and max

�bN�r�bN�1
jFðηrþ1;NÞ � Fðηr;NÞj ¼ OðN�3=4

log LÞalmost surely.

For r ¼ 1; 2; . . . ; bN , let UðrÞ
ji ¼ IðXji � ηr;NÞ

�IðXji � �αÞ. Notice that UðrÞ
ji is 0–1 valued, and such

that,

FNðηr;NÞ � FNð�αÞ ¼ 1
N

XR
j¼1

XL
i¼1

UðrÞ
ji

and Fðηr;NÞ � Fð�αÞ ¼ PðUðrÞ
ji ¼ 1Þ ¼: αðrÞN .

According to the Mean-Value Theorem and the
definition of bN ,

K1N�3=4 log L � pðrÞN � K2N�1=2 log L. By directly
applying Lemma A.2 (see Appendix A), we have that,
as L ! 1,

P j½FNðηr;NÞ � FNð�αÞ� � ½Fðηr;NÞ � Fð�αÞ�j>CN�3=4 log L
n o
� C2L

�2

if let s ¼ 2 in Lemma A.2.
For r ¼ �bN ; . . . ;�1, let UðrÞ

ji ¼ IðXji � �αÞ
�IðXji � ηr;NÞ, and we could derive the same results.

According to the Bonferroni Inequality,

Pf max
�bN�r�bN

j½FNðηr;NÞ � FNð�αÞ� � ½Fðηr;NÞ � Fð�αÞ�j

>CN�3=4 log Lg � C2 � 2bN � L�2 ¼ OðL�3=2Þ:
Then, by Borel–Cantelli Lemma Serfling (2009),

max
�bN�r�bN

j½FNðηr;NÞ � FNð�αÞ� � ½Fðηr;NÞ � Fð�αÞ�j
¼ OðN�3=4 log LÞ

almost surely. Then (7) holds.
We now prove (8). Let k ¼ Nα,

P �̂ðPÞα < �α � N�1=2 log L
� �

¼ P
XR
j¼1

XL
i¼1

I Xji � �α � N�1=2 log L
� �

� k

( )

¼ P
1
N

XR
j¼1

XL
i¼1

Wji � F �α � N�1=2 log L
� �

� k
N
� F �α � N�1=2 log L
� �( )

where Wji ¼ I Xji � �α � N�1=2 log L
� �

, and
PfWji ¼ 1g ¼ F �α � N�1=2 log L

� �
. Since as L ! 1,
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k
N
� F �α � N�1=2 log L
� �

¼ f ð�αÞN�1=2 log L½1þ oð1Þ�:

From Lemma A.1 (see Appendix A), as L ! 1,

1
N

XR
j¼1

XL
i¼1

Wji � PfWji ¼ 1g � 2
t

� 	
N�1=2 log L;

almost surely. Thus, we have that

�̂ðPÞα � �α � N�1=2 log L (9)

almost surely. Similarly,

P �̂ðPÞα > �α þ N�1=2 log L
� �

¼ P
1
N

XR
j¼1

XL
i¼1

I Xji � �α þ N�1=2 log L
� �

<
k
N

( )
:

By the monotonicity of Fð�Þ, as L ! 1,

1
N

XR
j¼1

XL
i¼1

I Xji � �α þ N�1=2 log L
� �

! Fð�α þ N�1=2 log LÞ;
and k

N ! Fð�αÞ. Thus, we have that,
�̂ðPÞα � �α þ N�1=2 log L (10)

as L ! 1 almost surely. Therefore, under

Assumption 2.4, the conclusion holds by setting x ¼
�̂
ðPÞ
α in (7).
Notice that Equation (8) can be rewritten as,

�̂ðPÞα � �α ¼ α� FNð�αÞ
f ð�αÞ þ OðN�3=4 log LÞ; (11)

which gives the Bahadur representation of sample
percentile of the pooled sample paths. Now we con-
sider the asymptotic distribution of the estimator �̂ðPÞα .

Let FjðxÞ ¼ 1
L

PL
i¼1 IðXji � xÞ for j ¼ 1; . . . ;R, and

FNðxÞ ¼ 1
R

PR
j¼1 FjðxÞ. Following the general defini-

tion in literature (e.g., Sen (1972)), we denote

v2 ¼ v0 þ 2
X1
h¼1

vh; (12)

where vh ¼ E IðXj;1 � �αÞIðXj;1þh � �αÞ

 �� α2,

which is the same for all replications with
j ¼ 1; 2; . . . ;R. Under the setting of pooled sample
paths in this paper, we obtain that

lim
L!1

N � Var ½FNð�αÞ�f g ¼ lim
L!1

L � Var ½Fjð�αÞ�
� �

¼ v2:

Theorem 3.2. Under Assumptions 2.1–2.3, and

σ2 :¼ v2=½f ð�αÞ�2, 0< σ2 <1,

N1=2ð�̂ðPÞα � �αÞ
σ

!d Nð0; 1Þ: (13)

Proof. According to Theorem 3.1, we have

N1=2½FNð�̂ðPÞα Þ � Fð�̂ðPÞα Þ�!p N1=2½FNð�αÞ � α� (14)

as L ! 1. By the central limit theorem for
ϕ�mixing variables (see Sen (1972) for example),

L1=2½Fjð�αÞ � α�=v!d Nð0; 1Þ and by the indepen-
dence between replications,

N1=2½FNð�αÞ � α�
v

!d Nð0; 1Þ: (15)

On the other hand, FNð�̂ðPÞα Þ ¼ k=N ¼ αþ
OðN�1Þ ¼ Fð�αÞ þ OðN�1Þ. As L ! 1,

N1=2½FNð�̂ðPÞα Þ � Fð�̂ðPÞα Þ�
¼ N1=2½Fð�αÞ � Fð�̂ðPÞα Þ� þ OðN�1=2Þ

¼ N1=2ð�α � �̂ðPÞα Þf ð�αÞ
h i f ðθ�̂ðPÞα þ ð1� θÞ�αÞ

f ð�αÞ
þ OðN�1=2Þ

(16)

where θ 2 ½0; 1�. Since f ðxÞ is continuous in some
neighbourhood of �α, 0< f ð�αÞ<1, and from

Theorem 3.1, j�α � �̂
ðPÞ
α j � N�1=2 log L, then as

L ! 1, f ðθ�̂ðPÞα þ ð1� θÞ�αÞ=f ð�αÞ!p 1. By applying
(14), (15) and (16), and the Slutsky’s Theorem, (13)
holds. □

According to (11) and (13), for the sample α-

percentile �̂
ðPÞ
α given by (3), we have the following

asymptotic bias and variance:

Biasð�̂ðPÞα Þ ¼ OðN�3=4 log LÞ; andVarð�̂ðPÞα Þ
¼ v2

N½f ð�αÞ�2
: (17)

On the other hand, for the classical sample percentile

�̂
ðAÞ
α given by (4), we can directly apply the results from
Sen (1972) to obtain

Biasð�̂ðAÞα Þ ¼ OðL�3=4 log LÞandVarð�̂ðAÞα Þ
¼ v2

N½f ð�αÞ�2
; (18)

by the mutual independence among different replica-
tions. Asymptotically, �̂ðPÞα achieves the same variance

as �̂ðAÞα , while the bias of �̂ðPÞα is in a smaller order than

the bias of �̂ðAÞα . We see that the bias of �̂ðAÞα decreases as
we increase the run-length, whereas stays the same as
we increase the number of replications. Different from

the classical percentile estimator, the bias of �̂
ðPÞ
α

decreases as we increase either the run-length or the
number of replications. Comparing these two estima-
tors using the mean squared error (MSE), the pooled
percentile estimator can achieve smaller MSE than the
classical average percentile estimator.

As discussed earlier, multiple replications could be
assigned to parallel processors. Thus, given a tight
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decision time, different replications can be allocated to
parallel processors to improve the percentile estima-
tion under a tight time constraint. With that said, the
fixed decision time implies that the run-length is fixed
to be L, while the number of replications R can be
increased depending on how many parallel processors

are available. Under this situation, the bias of �̂ðAÞα stays
at the same order no matter how many processors
have been adopted to enlarge the number of replica-

tions. Different from �̂
ðAÞ
α , the bias of �̂ðPÞα decreases as

we increase the number of parallel processors. In
Section 4, we use an empirical example to demonstrate
that the pooled percentile estimator outperforms the
classical average percentile estimator when the run-
length is insufficient due to an urgent deadline.

4. Numerical study

In this section, we provide an empirical example to
illustrate the performance of the proposed approach
under the parallel computing setting. We use MSE to
demonstrate the performance of different estimators.
In the following examples, the MSE is computed with
100 micro-replications:

MŜEð�̂αÞ ¼ 1
100

X100
m¼1

�̂ðmÞ
α � �α

� �2

where �̂ðmÞ
α is the estimator for α-level percentile from the

pooled or the classical average method at the m-th
micro-replication. Two examples AR(1) and M/M/1
queue are used to generate the dependent sequences.
We consider that R parallel processors are available to
use, and the simulation running in each processor gen-
erates one replication of the dependent sequence. Two
situations are considered: (1) there is an urgent deadline
to provide a percentile estimator, so we only have time to
generate dependent sequences with run-length
L ¼ 1000; and (2) the deadline to provide a percentile
estimator is not urgent, and we are able to generate
dependent sequences with sufficient run-length
L ¼ 10000.

Example 1: AR(1)We consider an AR(1) process. For
one replication of the dependent sequence, the outputs
are given by

Xi ¼ μþ ϕXi�1 þ εi;

where εi is a white noise process with zero mean
and variance σ2. We fix the mean μ ¼ 0 and variance
σ2 ¼ 1. The correlation parameter ϕ is varying from
0.3, 0.5, to 0.9. We estimate the percentiles �α of the
outputs with α ¼ 50%, 95%, and compare the perfor-
mance of the pooled estimator in (3) with the classical
average percentile estimator in (4). The results of

Quantile = 0.95 Cor =  0.3 Quantile = 0.95 Cor =  0.5 Quantile = 0.95 Cor =  0.9

Quantile = 0.5 Cor =  0.3 Quantile = 0.5 Cor =  0.5 Quantile = 0.5 Cor =  0.9

100 200 300 100 200 300 100 200 300

100 200 300 100 200 300 100 200 300

3e−04

6e−04

9e−04

0.0005

0.0010

0.0015

0.0020

0.00004

0.00008

0.00012

1e−04

2e−04

3e−04

4e−04

3e−05

6e−05

9e−05

1e−04

2e−04

3e−04

Number of Processors

M
S

E

method Average quantile estimator Pooled quantile estimator

Figure 1. Percentile estimates under an urgent deadline (L ¼ 1000) of the AR(1) example. This figure demonstrates the situation
that the experimenter encounters an urgent deadline to provide a percentile estimator, and the time constraint does not allow the
run-length on each processor to be sufficient.
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MSEs under urgent deadline and non-urgent deadline
are given in Figures 1 and 2, respectively.

Example 2: M/M/1 Queue We consider the steady-
stateM=M=1 Queueing system. We fix the arrival rate
to be 1, and vary the utilisation (traffic intensity) to be
0.7 or 0.9. We estimate the percentiles �α of time
staying in the system with α ¼ 50%, 95%, and com-
pare the performance of the pooled estimator in (3)
with the classical average percentile estimator in (4).
The results of MSEs under urgent deadline and non-
urgent deadline are given in Figures 3 and 4,
respectively.

The results shown in Figure 3 represent the perfor-
mances of the percentile estimators under an urgent
deadline (i.e., run-length L ¼ 1000), whereas the
results shown in Figure 4 represent the performances
of the percentile estimators under a non-urgent dead-
line (i.e., run-length L ¼ 10000). The y-axis represents
the estimated MSE and the x-axis is the number of
processors R, and different scenarios are labelled on
top of each sub-figure. For the cases representing an
urgent deadline, the pooled percentile estimator gives
smaller or competitive MSEs compared to the average
percentile estimator. This demonstrates the benefits of
using the pooled percentile estimator when there is
not sufficient time to generate a lengthy sequence. For

the cases representing a non-urgent deadline, we have
sufficient time to generate dependent sequences with
a relatively large run-length on each processor. As also
demonstrated in the theoretical comparison, the MSEs
from the pooled estimator significantly outperform
the average percentile estimator if the run-length is
sufficient.

5. Discussion

As a summary, we study the pooled percentile estima-
tor, which takes the sample percentile by pooling
independently generated sample paths together. We
develop the asymptotic representation of the proposed
percentile estimator generated from multiple replica-
tions of dependent sequences. Compared with the
classical average percentile estimator, the pooled per-
centile estimator demonstrates better asymptotic and
finite-sample performance under the context of paral-
lel simulations. The pooled percentile estimator can be
advanced by combining various existing variance
reduction techniques in the literature. Hence, as
a promising future direction, the accuracy of the
pooled percentile estimator can be further improved
by incorporating existing techniques, such as control
variates (i.e., Hesterberg and Nelson (1998); Hsu and
Nelson (1990)), importance sampling and stratified
sampling (i.e., Glasserman et al. (2000), Glynn
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Figure 2. Percentile estimates under non-urgent deadline (L ¼ 10000) of the AR(1) example. This figure demonstrates that there is
no time constraint to generate the percentile estimator, and the run-length can be sufficient to guarantee the accuracy.
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(1996), and Sun and Hong (2010)) antithetic variates
and Latin hypercube sampling (i.e., Avramidis and
Wilson (1998); Jin et al. (2003)), as well as bias correc-
tion techniques (i.e., Gomes and Figueiredo (2006),
Gomes and Pestana (2007), and Matthys et al. (2004)).

Although the results of theoretically verification of
the ϕ-mixing condition for some popular examples of
dependent sequences can be found in Bradley (2005),
it is known that the ϕ-mixing condition can be diffi-
cult to check in general as mentioned in Alexopoulos
et al. (2019). It is a promising future direction to
extend the asymptotic properties in this paper based
on the milder conditions in Wu (2005) by following
the development of Alexopoulos et al. (2019).

The trade-off between one single replication with
multiple replications is an important issue to address
for future study. The effort spending on the warm-up
simulation procedure to achieve steady-state should
also be considered. For the case with multiple replica-
tions, the warm-up procedure to generate steady-state
outputs may not be negligible. A preliminary idea is
that, we can formulate the accuracy of an estimator as
an objective function of R and L, and the computa-
tional cost can be specified as N ¼ ðRþWÞL, where
W is the warm-up runs, which is assumed to be a fixed
number. Therefore, the optimal choice of run length R
and replication L could be a solution of maximising
the accuracy under the constraint thatN ¼ ðRþWÞL.
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Figure 3. Percentile estimates under an urgent deadline (L ¼ 1000) of the M/M/1 example. This figure demonstrates the situation
that the experimenter encounters an urgent deadline to provide a percentile estimator, and the time constraint does not allow the
run-length on each processor to be sufficient.
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Along this line, it is critically important to further
investigate how to balance the trade-off between one
single replication with multiple replications.
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Appendix A. Some Useful Lemmas

We first consider that fYji : j ¼ 1; 2; . . . ;R; i ¼ 1; 2; . . . ; Lg are series of 0–1 valued random variables which satisfies the same
mixing condition as fXjig given through (5) and (6), and sharing the same marginal distribution

PðYji ¼ 1Þ ¼ 1� PðYji ¼ 0Þ ¼ α. Assume that Sj ¼
PL

i¼1 Yji and SN ¼PR
j¼1 Sj, then we can have the following lemma by

extending the results in Section 4 of Sen (1972).
Lemma A.1. For a positive t (t< 3) that the ϕ�mixing condition holds, as L ! 1 and R ¼ oðLÞ,

SN � Nαþ 2
t

� 	
N1=2 log L; w:p:1 (A1)

Proof. By Markov inequality, we would have,

P SN >Nαþ 2
t

� 	
N1=2 log L

� 	
� inf

h > 0
exp �hNα� 2

t

� 	
hN1=2 log L

� 

E ½expðhSNÞ�

� �
And we can rewrite Sj ¼ Sð1Þj þ Sð2Þj þ � � � þ SðkLÞj with Sð,Þj ¼ Yj, þ Yj;,þnL þ � � � þ Y

j;,þmð,Þ
L nL

, and choose integer

nL ¼ 2
tÞ log L
�

, 1 � , � nL, and mð,Þ
L be the largest positive integer s.t. ,þmð,Þ

L nL � L, notice that mð,Þ
L � mð1Þ

L � L=nL � 1.
Then from the independence between replications and inequality between arithmetic and geometric means, we have,

E ½expðhSNÞ� ¼
YR
j¼1

E ½expðhSjÞ� ¼
YR
j¼1

E
YnL
,¼1

expðhSð,Þj Þ
" #

�
YR
j¼1

E

PnL
,¼1 expðhSð,Þj Þ

nL

 !nL" #
� E ½expðhnLSð1Þ1 Þ�
n oR

According to the ϕ�mixing condition (5), for every i, PðYj;iþnL ¼ 1jFi�1Þ � αþ ϕðnLÞ and from condition (6) and the
choice of nL, we have,

ϕðnLÞ ¼ o e�tnLð Þ ¼ o expð�2 log LÞ½ � ¼ oðL�2Þ; as L ! 1:

Then, for m ¼ 1; � � � ;mð1Þ
L ,

E expðhnLYj;1þmnLÞ
��F1þðm�1ÞnL�1

h i
¼ 1þ P Yj;1þmnL ¼ 1

��F1þðm�1ÞnL�1
� �

½expðhnLÞ � 1�
� 1þ ½αþ oðL�2Þ�½expðhnLÞ � 1�;

(A2)

and E ½expðhnLYj1Þ� ¼ 1þ α½expðhnLÞ � 1�. Applying those recursively yields:

E ½expðhnLSð1Þ1 Þ� ¼ E E expðhnL
Xmð1Þ

L

m¼0

Y1;1þmnLÞ
������F1þðm�1ÞnL�1

2
4

3
5

8<
:

9=
; � E expðhnL

Xmð1Þ
L �1

m¼0

Y1;1þmnLÞ
2
4

3
5f1þ ½αþ oðL�2Þ�½expðhnLÞ � 1�g

� � � � � f1þ ½αþ oðL�2Þ�½expðhnLÞ � 1�gmð1Þ
L þ1

� exp
L
nL

logf1þ ½αþ oðL�2Þ�½expðhnLÞ � 1�g
� �

� exp
tL

2 log L
logf1þ ½αþ oðL�2Þ�½expðhnLÞ � 1�g

� �
(A3)

Then, for any h > 0,

P SN >Nαþ ð2
t
ÞN1=2 log L

� 	
� exp �hNα� ð2

t
ÞhN1=2 log L

�
þ tRL
2 log L

logf1þ ½αþ oðL�2Þ�½expðhnLÞ � 1�g
�
: (A4)

By selecting h ¼ t
2N1=2αð1�αÞ , we can have,

P SN >Nαþ ð2
t
ÞN1=2 log L

� 	
� exp � tN1=2

2ð1� αÞ �
log L

αð1� αÞ
�

þ tN
2 log L

logf1þ ½αþ oðL�2Þ�½expð log L
N1=2αð1� αÞÞ � 1�g

�

¼ exp �ð1� t=4Þ log L
αð1� αÞ þ oð1Þ

� �
¼ OðL�rÞ

where the equality is obtained by applying Taylor’s expansion on expð�Þ and logð1þ �Þ, and requires R ¼ oðLÞ. Notice that
αð1� αÞ � 1=4, for t< 3, we have r > 1, so (19) can directly follow Borel-Cantelli Lemma (Serfling, 2009). □

We now consider sequence of 0–1 valued random variables Uji s.t. Uji ¼ UðXjiÞ and PðUji ¼ 1Þ ¼ 1� PðUji ¼ 0Þ ¼ αN
for all j and i. We can define Sj, SN similar as before by replacing Yji with Uji.

Lemma A.2. If there exists positive K1 and K2 such that K1N�3=4 log L � αN � K2N�1=2 log L, for every positive C and s, there
exists positive Cs <1 and L0ðsÞ, such that for L � L0ðsÞ,
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P
SN
N

� αN >CN�3=4 log L

� �
� CsL

�s (A5)

Proof. For simplicity, let C ¼ 1, and then "ε > 0, follow the similar procedure in the proof of Lemma A.1,

P
SN
N

� αN >N�ð3=4�εÞ log L
� �

¼ P SN >NαN þ N1=4þε log L
n o

� inf
h > 0

exp �hNαN � hN1=4þε log L
h i

E ½expðhSð1Þ1 Þ�
� �R� �

where Sð,Þj is also defined similarly as in Lemma A.1, by replacing Yji with Uji. Again we choose nL ¼ 2t�1 log L, then (A2),
(A3) still hold. for any h > 0,

P
SN
N

� αN >N�ð3=4�εÞ log L
� �

� exp � 2
t

� 	
hN1=4þε log L

�

�hNαN þ tRL
2 log L

logf1þ ½αN þ oðL�2Þ�½expðhnLÞ � 1�g
�
:

By selecting h ¼ s
N1=4þε , we can have,

P
SN
N

� αN >N�ð3=4�εÞ log L
� �

� exp �stN3=4�εαN � s log L
n

þ tN
2 log L

logf1þ ½αN þ oðL�2Þ�½exp 2s log L
tN1=4þε

� 	
� 1�g

�

¼ exp �s log Lþ s2αNð1� αNÞ log L
t

N1=2�2ε þ oð1Þ
� �

where the last equality is obtained by applying Taylor’s expansion on expð�Þ and logð1þ �Þ, and requires R ¼ oðLÞ. Since
αN � K2N�1=2 log L, t�1s2αNð1� αNÞ log LN1=2�2ε � OðN�2εðlog LÞ2Þ ¼ oð1Þ, we have that

P
SN
N

� αN >N�ð3=4�εÞ log L
� �

� expf�s log Lþ oð1Þg: (A6)

Let ε ! 0, then (A5) directly follows from (A6). □
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